Search results for " Friction Stir Welding"

showing 10 items of 15 documents

Effect of active heating and cooling on microstructure and mechanical properties of friction stir–welded dissimilar aluminium alloy and titanium butt…

2019

A butt joint configuration of AA6061–pure Ti was welded using friction stir welding (FSW) with an assisted cooling and heating conditions, aiming to attain a flawless joint. Cooling-assisted friction stir welding (CFSW) was carried out with a different cooling medium such as CO2, compressed air and water at controlled flow rate. However, heating-assisted friction stir welding (HFSW) was performed with heating source of GTAW torch just before FSW tool at different current density. Prepared specimens were subjected to optical microscopy (OM), scanning electron microscopy (SEM) and electrodischarge spectroscopy (EDS) for microstructural characterizations. The tensile strength and microhardness…

0209 industrial biotechnologyMaterials scienceDissimilar metal joiningMechanical properties02 engineering and technologyWeldingIndentation hardness020501 mining & metallurgylaw.inventionHeating020901 industrial engineering & automationlawUltimate tensile strengthAluminium alloyFriction stir weldingmechanical propertieboron carbidefriction stir processingComposite materialmetal matrix compositeInterfacial microstructureHybrid friction stir weldingMechanical EngineeringGas tungsten arc weldingMetals and AlloysMicrostructure0205 materials engineeringMechanics of Materialsvisual_artaluminumvisual_art.visual_art_mediumButt jointMaterials processingCooling
researchProduct

Residual stress measurement in innovative friction stir welding processes

2017

In recent years, important innovations have been introduced in Friction Stir Welding (FSW) technology such as, for example, the Laser assisted Friction Stir Welding (LFSW) and in-process Cooled Friction Stir Welding (CFSW). Residual stresses have a fundamental role in welded structures because they affect the way to design the structures, fatigue life, corrosion resistance and many other material properties. Consequently, it is important to investigate the residual stress distribution in FSW where, though the heat input is lower compared to traditional welding techniques, the constraints applied to the parts to weld are more severe. The aim of the present work is to verify the capabilities …

0209 industrial biotechnologyMaterials scienceFriction Stir Welding; In-process Cooled Friction Stir Welding; Laser assisted Friction Stir Welding; Residual stress; X-ray diffraction; Materials Science (all); Mechanics of Materials; Mechanical EngineeringLaser assisted Friction Stir WeldingFriction Stir WeldingResidual stress02 engineering and technologyWeldinglaw.invention020901 industrial engineering & automationlawResidual stressFriction stir weldingGeneral Materials ScienceFriction weldingComposite materialMechanical EngineeringMetallurgyIn-process Cooled Friction Stir Welding021001 nanoscience & nanotechnologyStrength of materialsX-ray diffractionMechanics of MaterialsMaterials Science (all)0210 nano-technologyresidual stress friction stir welding laser assisted friction stir welding in-process cooled friction stir welding x-ray diffraction
researchProduct

Effect of position and force tool control in friction stir welding of dissimilar aluminum-steel lap joints for automotive applications

2020

Widespread use of aluminum alloys for the fabrication of car body parts is conditional to the use of appropriate welding methods, especially if dissimilar welding must be performed with automotive steel grades. Friction stir welding (FSW) is considered to be a reasonable solution to obtain sound aluminum-steel joints. In this context, this work studies the effects of tool position and force control in dissimilar friction stir welding of AA6061 aluminum alloy on DC05 low carbon steel in lap joint configuration, also assessing proper welding parameter settings. Naked eye and scanning electron microscopy (SEM) have been used to detect macroscopic and microscopic defects in joints, as well as t…

0209 industrial biotechnologyMaterials sciencePolymers and PlasticsCarbon steelAlloyContext (language use)02 engineering and technologyWeldingengineering.materialIndustrial and Manufacturing Engineeringlaw.invention020901 industrial engineering & automationAA6016 aluminum alloy0203 mechanical engineeringlawFriction stir weldingComposite materialJoint (geology)Tensile testingFriction stir welding (FSW)Mechanical EngineeringDissimilar materialWelding parametersDissimilar materialsAA6016 aluminum alloy; DC05 low carbon steel; Dissimilar materials; Friction stir welding (FSW); Welding parameters020303 mechanical engineering & transportsLap jointMechanics of MaterialsDC05 low carbon steelengineering
researchProduct

Caratterizzazione microstrutturale e meccanica di giunti friction skin-stringer (2024/t4-7075/t6) saldati a basso e alto apporto termico

2011

2024-T4 7075-T6 skin-stringer FSW( Friction stir welding) dimensione dei grani microdurezza resistenza meccanicaSettore ING-IND/16 - Tecnologie E Sistemi Di Lavorazione
researchProduct

Material flow and CDRX phenomena determining joint resistance in AA7075-T6 friction stir welding

2006

AA7075-T6 friction stir welding
researchProduct

Analisi numerico-sperimentale per la determinazione delle tensioni residue in un giunto saldato

2013

La durata di un componente dipende dall’interazione tra le caratteristiche meccaniche del materiale con cui è costruito e gli sforzi a cui esso è sottoposto. Per la determinazione dello stato tensionale agente, oltre agli sforzi dovuti ai carichi imposti durante l’esercizio, è necessario conoscere accuratamente gli stati tensionali residui derivanti dal processo di produzione. Generalmente, le tensioni residue sono indesiderate poiché possono essere di entità elevata e tale da ridurre la resistenza complessiva del componente meccanico. Un aspetto particolarmente insidioso delle tensioni residue è che la loro presenza viene generalmente riconosciuta solo dopo il verificarsi di un malfunziona…

Cut-Compliance Technique Friction Stir Welding residual stress Virtual Crack Closure Technique aluminum alloy FEM analysis
researchProduct

CDRX modelling in friction stir welding of AA7075-T6 aluminum alloy: analytical approaches

2007

Abstract Friction stir welding (FSW) is an energy efficient and environmentally “friendly” (no fumes, noise, or sparks) welding process, during which the workpiece are welded together in a solid-state joining process at a temperature below the melting point of the workpiece material under a combination of extruding and forging. Significant microstructural evolution takes place during FSW: in particular continuous dynamic recrystallization (CDRX) phenomena result in a highly refined grain structure in the weld nugget and strongly affect the final joint resistance. In the paper two different analytical models aimed to the determination of the average grain size due to continuous dynamic recry…

FEMMaterials scienceMetallurgyAlloyMetals and AlloysRecrystallization (metallurgy)continuous dynamic recrystallizationWeldingengineering.materialIndustrial and Manufacturing EngineeringGrain sizeFinite element methodForgingaluminum alloy friction stir weldingComputer Science Applicationslaw.inventionlawModeling and SimulationCeramics and CompositesengineeringFriction stir weldingFriction weldingSettore ING-IND/16 - Tecnologie E Sistemi Di Lavorazione
researchProduct

Welding abilities of UFG metals

2018

Ultrafine Grained (UFG) metals are characterized by an average grain size of <1 μm and mostly high angle grain boundaries. These materials exhibit exceptional improvements in strength, superplastic behaviour and in some cases enhanced biocompatibility. UFG metals barstock can be fabricated effectively by means of Severe Plastic Deformation (SPD) methods. However, the obtained welded joints with similar properties to the base of UFG material are crucial for the production of finished engineering components. Conventional welding methods based on local melting of the joined edges cannot be used due to the UFG microstructure degradation caused by the heat occurrence in the heat affected zone…

Heat-affected zoneMaterials scienceRecrystallization (metallurgy)SuperplasticityUltrafine Grained (UFG) Linear Friction Welding (LFW) Severe Plastic Deformation (SPD) Rotary Friction Welding (RFW) Friction Stir Welding (FSW)WeldingMicrostructurelaw.inventionlawGrain boundaryFriction weldingSevere plastic deformationComposite materialSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneAIP Conference Proceedings
researchProduct

An overview of new joining technologies in aerostructures: laser beam welding and friction stir welding

2009

Joining laser welding friction stir weldingSettore ING-IND/16 - Tecnologie E Sistemi Di Lavorazione
researchProduct

Experimental and numerical analysis on post welding formability of FSWed AZ31 magnesium alloy thin joints obtained using a "Pinless" tool configurati…

2012

The post welding formability of friction stir welded AZ31 magnesium alloy thin sheets (1.5 mm thick), obtained using a “pinless” tool configuration, was widely investigated by means of the hemispherical punch method at 350°C, with a constant crosshead speed of 0.1 mm/s. The results were compared with those obtained on the base material. It has shown that formability of the joints is lower than the one of the base material. The experimental work was supported by a numerical investigation based on FEM in order to highlight the material flow occurring during the welding process. Additionally, hemispherical punch tests were simulated starting from the calculated conditions, in terms of accumula…

Magnesium alloy Thin sheets Friction stir welding Pinless tool configuration Post welding formability FEMSettore ING-IND/16 - Tecnologie E Sistemi Di Lavorazione
researchProduct